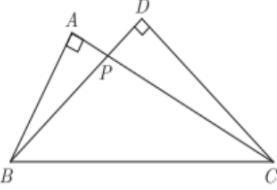
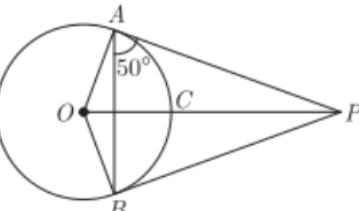
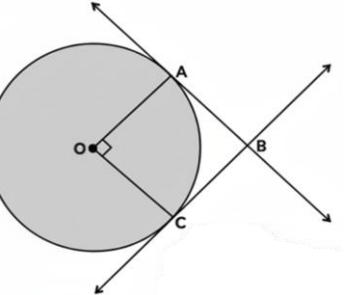
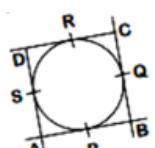


**COMMON PRE-BOARD EXAMINATION
MATHEMATICS (STANDARD)–Code No. 041**
CLASS-X-(2025-26)




SET: 1


Time allowed: 3 Hrs

Marking Scheme

Maximum Marks: 80

(Section A) Section A consists of 20 questions of 1 mark each.		
1.	(C) rational number	1
2.	(B) $\frac{4}{35}$	1
3.	(D) $\sqrt{5}$	1
4.	(B) 6	1
5.	(C) 3	1
6.	(A) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	1
7.	(C) 83°	1
8.	(A) $2AB$	1
9.	(C) 8 cm	1
10.	(A) 1 : 2	1
11.	(C) 7	1
12.	(B) $\frac{1}{2}$	1
13.	(C) $\frac{\sqrt{b^2-a^2}}{b}$	1
14.	(D) $\frac{41}{40}$	1
15.	(C) $10k^2$	1
16.	(A) $6\pi cm^2$	1
17.	(A) $R_1 + R_2 = R$	1
18.	(C) 13	1

19.	(C) Assertion (A) is true but reason (R) is false	1	
20.	(D) Assertion (A) is false but reason (R) is true	1	
(Section – B) Section B consists of 5 questions of 2 marks each.			
21.	<p>Since the terms are in A.P.,</p> $(2x + 1) - (x + 3) = (x - 7) - (2x + 1)$ $\Rightarrow x - 2 = -x - 8 \Rightarrow 2x = -6 \Rightarrow x = -3$ <p>(OR)</p> <p>Given $a_{17} = a_{10} + 7$ i.e. $a + 16d = a + 9d + 7$ $\Rightarrow 16d - 9d = 7 \Rightarrow 7d = 7 \Rightarrow d = 1$</p>	1 1 1 $\frac{1}{2}$ $\frac{1}{2}$	
22.	<p>In ΔBAP and ΔCDP we have</p> $\angle BAP = \angle CDP = 90^\circ$ $\angle BPA = \angle CPD$ (vertical opposite angles) <p>$\angle BAP \sim \angle CDP$ (AA similarity)</p> <p>Therefore $\frac{BP}{PC} = \frac{AP}{PD}$ (corresponding parts of similar triangles)</p> $AP \times PC = BP \times PD$ Hence proven		Fig $\frac{1}{2}$ Proof (1) Criteria $\frac{1}{2}$
23.	$\angle OAP = 90^\circ$ ($r \perp t$) $\angle OAB = \angle OAP - \angle BAP = 90^\circ - 50^\circ = 40^\circ$ Since OA and OB are radii, we have $\angle OAB = \angle OBA = 40^\circ$ (angles opp. to equal sides) Now, $\angle AOB + \angle OAB + \angle OBA = 180^\circ$ (angle sum property) $\Rightarrow \angle AOB + 40^\circ + 40^\circ = 180^\circ$ $\Rightarrow \angle AOB = 100^\circ$ <p>(OR)</p> <p>$\angle OAB = 90^\circ$ and $\angle OCB = 90^\circ$ ($r \perp t$) $\angle AOC = 90^\circ$ (given) $\Rightarrow \angle ABC = 90^\circ$ (angle sum in a quadrilateral)</p> <p>*Since all four interior angles of the quadrilateral OABC are 90°, it is a rectangle</p> <p>*Now $OA = OC$ (radii of the same circle) i.e., OABC is a rectangle with adjacent sides OA and OC equal \Rightarrow It is a square.</p>		$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
23.		$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
24.	$2(2)^2 + x \left(\frac{\sqrt{3}}{2} \right)^2 - \frac{3}{4} \left(\frac{1}{\sqrt{3}} \right)^2 = 10 \Rightarrow 8 + \frac{3x}{4} - \frac{1}{4} = 10 \Rightarrow x = 3$	Each value $\frac{1}{2}$ each Final answer $\frac{1}{2}$	

25.	$A = \frac{1}{2}lr \Rightarrow 54\pi = \frac{1}{2}l \cdot 36$ $\Rightarrow 54\pi = 18l \Rightarrow l = 3\pi = 3 \times \frac{22}{7} = \frac{66}{7} = 9.42\text{cm}$	$\frac{1}{2} + \frac{1}{2}$ 1
(Section – C) Section C consists of 6 questions of 3 marks each.		
26.	<p>Let $(2 + 5\sqrt{3})$ be rational</p> $\Rightarrow 2 + 5\sqrt{3} = \frac{p}{q}, \text{ where } p \text{ & } q \text{ are integral co-primes & } q \neq 0$ $\Rightarrow 5\sqrt{3} = \frac{p}{q} - 2$ $\Rightarrow \sqrt{3} = \frac{1}{5} \left(\frac{p}{q} - 2 \right)$ <p>Here, LHS is irrational but RHS is rational</p> <p>This is a contradiction</p> <p>Therefore, our assumption is wrong</p> <p>Hence, $(2 + 5\sqrt{3})$ is irrational</p>	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
27.	$\alpha + \beta = 10 \Rightarrow \frac{5}{a} = 10 \Rightarrow a = \frac{1}{2}$ $\alpha\beta = 10 \Rightarrow \frac{c}{a} = 10 \Rightarrow c = 5$	$1\frac{1}{2}$ $1\frac{1}{2}$
28.	<p>Assuming speeds as x km/hr and y km/hr,</p> <p>Distance = Speed \times Time, we get $16 = (2x + 2y) \Rightarrow x + y = 8 \rightarrow (1)$</p> <p>Similarly, $16 = (8x - 8y) \Rightarrow x - y = 2 \rightarrow (2)$</p> <p>Solving, $x = 5$ and $y = 3$</p> <p>The walking speeds are 5km/h and 3km/h</p> <p>(OR)</p> <p>For no solutions, $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \Rightarrow \frac{k}{3} = \frac{k-2}{1} \neq \frac{1}{5}$</p> $\Rightarrow k = 3 \text{ and } \frac{1}{1} \neq \frac{1}{5}$ <p>Since $1 \neq \frac{1}{5}$, the condition for no solutions is satisfied for $k = 3$.</p>	$\frac{1}{2}$ 1 1 $\frac{1}{2}$ (OR) $\frac{1}{2} + 1$ 1 $\frac{1}{2}$
29.	<p>Since, Tangents from the same external point are equal in length.</p> <p>$AP = AS \rightarrow (1)$ $BP = BQ \rightarrow (2)$ $CR = CQ \rightarrow (3)$ $DR = DS \rightarrow (4)$</p> <p>Adding equations $(1 + 2 + 3 + 4)$</p> $AP + BP + CR + DR = AS + BQ + CQ + DS$ $AB + CD = AD + BC$ $6 + 8 = AD + 9 \Rightarrow AD = 14 - 9 = 5 \text{ cm}$	 1 1 1
30.	$\text{LHS} = \sqrt{\frac{(1 + \sin A)}{(1 - \sin A)} \times \frac{(1 + \sin A)}{(1 + \sin A)}} = \sqrt{\frac{(1 + \sin A)^2}{1 - \sin^2 A}} = \sqrt{\frac{(1 + \sin A)^2}{\cos^2 A}} = \frac{1 + \sin A}{\cos A}$ $= \frac{1}{\cos A} + \frac{\sin A}{\cos A} = \sec A + \tan A = \text{RHS}$	$\frac{1}{2}$ each $\frac{1}{2} + \frac{1}{2}$

31.	Total number of numbers = $(123 - 11) + 1 = 113$	1
	(i) $P(\text{perfect square}) = \frac{8}{113}$	1
	(ii) $P(\text{multiple of 7}) = \frac{16}{113}$	1
	(OR)	(OR)
	(i) $P(\text{non-face card}) = \frac{52-12}{52} = \frac{40}{52} = \frac{10}{13}$	1
	(ii) $P(\text{a black king}) = \frac{2}{52} = \frac{1}{26}$	1
	(iii) $P(\text{neither a red nor a jack}) = \frac{52-28}{52} = \frac{24}{52} = \frac{6}{13}$	1

(Section – D)
Section D consists of 4 questions of 5 marks each

32.	Let the unit digit of the number be y and the tens digit of this number be x . So, the number is $10x + y$ and the number interchanging the digits = $10y + x$	$\frac{1}{2}$
	Given $xy = 12$... ⁽¹⁾	$\frac{1}{2}$
	Also, $(10x + y) + 36 = 10y + x \Rightarrow x = (y - 4)$... ⁽²⁾	1
	On substituting the value of x in equation (1), we get,	
	$y \cdot (y - 4) = 12 \Rightarrow y^2 - 4y - 12 = 0 \Rightarrow y = 6 \text{ or } -2$	1
	But the unit digit of the two-digit number cannot be negative.	$\frac{1}{2}$
	$\Rightarrow y = 6 \Rightarrow x = 6 - 4 \Rightarrow x = 2$	$\frac{1}{2}$
	$\Rightarrow 10x + y = 10 \times 2 + 6 = 26$	$\frac{1}{2}$
	Hence the number is 26.	
	(OR)	(OR)

For the first equation, $x^2 + kx + 64 = 0$:

The discriminant is $\Delta_1 = k^2 - 4(1)(64) = k^2 - 256$

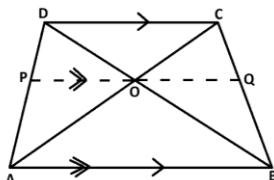
For real roots, we must have $k^2 - 256 \geq 0 \Rightarrow k^2 \geq 256$

$\Rightarrow k \leq -16 \text{ or } k \geq 16$

Since the problem asks for positive values of k , we consider $k \geq 16 \rightarrow (1)$

For the second equation, $x^2 - 8x + k = 0$:

The discriminant is $\Delta_2 = (-8)^2 - 4(1)(k) = 64 - 4k$


For real roots, we must have $64 - 4k \geq 0$

$\Rightarrow 64k \geq 4k \Rightarrow 16 \geq k \rightarrow (2)$

The only value that satisfies both inequalities is when k is exactly equal to 16.

The positive value of k for which both equations will have roots is 16.

33.	Statement : If a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, then the line divides the two sides in the same ratio.	1
	Given: Trapezium ABCD, $AB \parallel CD$, diagonals AC and BD intersect at O.	$\frac{1}{2}$
	To prove: $\frac{DP}{PA} = \frac{CQ}{BQ}$	$\frac{1}{2}$
	Construction: Draw $PQ \parallel AB$ through O to meet AD and BC at P and Q respectively	$\frac{1}{2}$

	<p>Proof: $PQ \parallel AB$ and $AB \parallel CD \Rightarrow PQ \parallel CD$</p> <p>In $\triangle DAB$, $PO \parallel AB \therefore \frac{DP}{PA} = \frac{DO}{BO}$ (BPT) —(1)</p> <p>Similarly, in $\triangle BCD$, $OQ \parallel CD$</p> $\Rightarrow \frac{BQ}{QC} = \frac{BO}{DO} \Rightarrow \frac{QC}{BQ} = \frac{DO}{BO} \quad \text{—(2)}$ <p>from (1) & (2), $\frac{DP}{PA} = \frac{QC}{BQ}$</p> <p>Hence the result.</p>	$\frac{1}{2}$ 1 $\frac{1}{2}$ $\frac{1}{2}$
34.	<p>Diameter of base = 3.5m, radius = $7/4$m, Height of the cylindrical part = $14/3$ m</p> <p>(i) Volume of vessel = $\pi r^2 h + \frac{2}{3} \pi r^3 = \pi r^2 \left(h + \frac{2}{3} r \right)$</p> $= \frac{22}{7} \times \frac{7}{4} \times \frac{7}{4} \left(\frac{14}{3} + \frac{2}{3} \times \frac{7}{4} \right) = \frac{2695}{48} = 56.15 \text{ m}^3$ <p>(ii) CSA of vessel = $2\pi r h + 2\pi r^2 = 2\pi r(h + r)$</p> $= 2 \times \frac{22}{7} \times \frac{7}{4} \times \left(\frac{14}{3} + \frac{7}{4} \right) = \frac{847}{12} = 70.58 \text{ m}^2$	1 $\frac{1}{2} + 1$ 1 1
35.	<p>The average performance of all countries from the graph is</p> $\frac{10 \times 13 + 30 \times 19 + 50 \times 6 + 70 \times 4}{13 + 19 + 6 + 4} = \frac{130 + 570 + 300 + 280}{42} = \frac{1280}{42} = 30.48 \text{ %}.$ <p>\Rightarrow Japan performed better than the average performance.</p> <p>(OR)</p> <p>Cf values $\rightarrow p, p+15, p+40, p+60, p+q+60, p+q+68, p+q+78$</p> $\Rightarrow p + q + 78 = 90 \Rightarrow p + q = 12$ $\frac{N}{2} = \frac{90}{2} = 45$ <p>Median = $L + \frac{\left(\frac{N}{2} - c.f. \right)}{f} \cdot h \Rightarrow 50 = 50 + \frac{45 - (p + 40)}{20} \cdot 10$</p> $\Rightarrow 0 = \frac{(5 - p)}{2} \Rightarrow 5 - p = 0 \Rightarrow p = 5$ <p>Now $q = 12 - p = 12 - 5 \Rightarrow q = 7$</p>	$\frac{1}{2} + 1 + 1$ 1 (OR) 1 $\frac{1}{2}$ $\frac{1}{2} + 1$ $\frac{1}{2}$ $\frac{1}{2}$

(Section – E)
Section E consists of 3 case study-based questions of 4 marks each.

36.	<p>(i) $a_1 = 20 + 4(1)a_1 = 20 + 4a_1 = 24$ The number on the first spot is 24. (This is also the first term, a).</p> <p>(ii) Let $a_n = 112 \Rightarrow 20 + 4n = 112$ $4n = 92 \Rightarrow n = 23$ The spot numbered as 112 is the 23rd spot.</p> <p>(OR)</p> $S_n = \frac{n}{2} [2a + (n - 1)d] \Rightarrow S_{10} = \frac{10}{2} [2(24) + (10 - 1)4]$ $S_{10} = 5[48 + 36] \Rightarrow S_{10} = 420$ <p>The sum of all the numbers on the first 10 spots is 420.</p>	1 $\frac{1}{2} + 1 + \frac{1}{2}$ (OR) $\frac{1}{2} + 1 + \frac{1}{2}$
-----	--	--

	<p>(iii) $a_n = 20 + 4n \Rightarrow a_{n-2} = 20 + 4(n-2)$ $a_{n-2} = 20 + 4n - 8 \Rightarrow a_{n-2} = 12 + 4n$ The number on the $(n-2)^{\text{th}}$ spot is $12 + 4n$.</p>	1
37.	<p>(i) distance formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$</p> <ul style="list-style-type: none"> • School S(3, 4) $\rightarrow (x_1, y_1)$ • Coaching Centre C(-2, 8) $\rightarrow (x_2, y_2)$ $d = \sqrt{(-2 - 3)^2 + (8 - 4)^2} \Rightarrow d = \sqrt{(-5)^2 + (4)^2} \Rightarrow d = \sqrt{25 + 16} \Rightarrow d = \sqrt{41}$ <p>The shortest distance between her school and coaching centre is $\sqrt{41}$ units.</p> <p>(ii) • A(-2, 4) $\rightarrow (x_1, y_1)$</p> <ul style="list-style-type: none"> • B(3, 4) $\rightarrow (x_2, y_2)$ • D(1, 4) $\rightarrow (x, y)$ • Ratio = $k:1$ <p>Using the section formula for the x-coordinate: $x = \frac{kx_2 + x_1}{k+1} \Rightarrow 1 = \frac{k(3) + 1(-2)}{k+1}$</p> $(k+1) = 3k - 2 \Rightarrow 3 = 2k \Rightarrow k = \frac{3}{2}$ <p>(iii) The area covered by the perpendicular lines from points A and B to the x-axis, the line segment AB, and the x-axis itself forms a rectangle with</p> <ul style="list-style-type: none"> • Length $l = 5$ units • Width $w = 4$ units <p>Area = $l \times w = 5 \times 4 = 20$ sq. units</p>	1
	<p>(OR)</p> <p>The mid-point of AB, M = $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$</p> $M = \left(\frac{-2+3}{2}, \frac{4+4}{2}\right) \Rightarrow M = \left(\frac{1}{2}, 4\right)$ <p>Image of M with respect to X axis = $\left(\frac{1}{2}, -4\right)$</p>	<p>(OR)</p> <p>2</p>
38.	<p>(i) 4 m</p> <p>(ii) $\sin(60^\circ) = \frac{BD}{BC} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4}{L}$</p> $L = \frac{8}{\sqrt{3}} = \frac{8\sqrt{3}}{3} \text{ m}$ <p>The length of the ladder should be $\frac{8\sqrt{3}}{3}$ m</p> <p>(iii) $\tan(60^\circ) = \frac{BD}{DC} \Rightarrow \sqrt{3} = \frac{4}{x} \Rightarrow x = \frac{4}{\sqrt{3}} = \frac{4\sqrt{3}}{3} \text{ m}$</p> <p>Using the approximate value $\sqrt{3} \approx 1.732$: $x \approx \frac{4 \times 1.732}{3} \approx \frac{6.928}{3} \approx 2.309$ m</p> <p>The foot of the ladder should be placed $\frac{4\sqrt{3}}{3}$ m (or approximately 2.31 m) away from the foot of the pole.</p> <p>(OR)</p>	<p>1</p> <p>1</p> <p>2</p> <p>(OR)</p>

	<ul style="list-style-type: none"> • Height to be reached (BD): 4 m (Opposite side) • Distance from the foot of the pole (DC): 4 m (Adjacent side) • Ladder length (BC): Hypotenuse (L'). 	
	<p>Using the Pythagorean theorem:</p> $L'^2 = (BD)^2 + (DC)^2 \Rightarrow L'^2 = (4)^2 + (4)^2 \Rightarrow L' = 4\sqrt{2} \text{ m}$ <p>The length of the ladder is $4\sqrt{2}$ m</p>	2
	End of the Marking Scheme	